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Abstract
Understanding the movement dynamics of marine fish provides valuable information that

can assist with species management, particularly regarding protection within marine pro-

tected areas (MPAs). We performed an acoustic tagging study implemented within the Port

Stephens-Great Lakes Marine Park on the mid-north coast of New South Wales, Australia,

to assess the movement patterns, home range and diel activity of snapper (Chrysophrys
auratus; Sparidae); a species of significant recreational and commercial fishing importance

in Australia. The study focused on C. auratusmovements around Cabbage Tree Island,

which is predominantly a no-take sanctuary zone (no fishing), with an array of acoustic sta-

tions deployed around the island and adjacent reefs and islands. Thirty C. auratus were
tagged with internal acoustic tags in November 2010 with their movements recorded until

September 2014. Both adult and juvenile C. auratus were observed to display strong site

fidelity to Cabbage Tree Island with a mean 12-month residency index of 0.83 (range = 0

low to 1 high). Only three fish were detected on acoustic receivers away from Cabbage

Tree Island, with one fish moving a considerable distance of ~ 290 kms over a short time

frame (46 days). The longest period of residency recorded at the island was for three fish

occurring regularly at the site for a period of 1249 days. Chrysophrys auratus displayed
strong diurnal behaviour and detection frequency was significantly higher during the day

than at night; however, there was no significant difference in detection frequency between

different hours. This study demonstrates that even small-scale protected areas can benefit

C. auratus during multiple life-history stages as it maintains a small home range and dis-

plays strong site fidelity over a period of 3 years.

Introduction
During the past century, tagging of marine fish has provided information on short-term move-
ments and species home ranges [1], and given an insight into large scale migrations of various
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species [2–4]. Monitoring of fish movements has been done using various tagging methods,
such as conventional ‘dart and anchor’ and elastomer tags [5–7] and satellite tags [8, 9]. More
recently, the use of acoustic tags has become a core method for assessing fish movements [10].
During the past decade, advancements in acoustic technologies have led to increased battery
life and tag miniaturisation allowing for species to be monitored for much longer periods of
time, providing longer term data sets on movements [11]. Movement data collected from
acoustic tagging studies can be used to determine site fidelity and species home ranges [12–14]
and habitat utilisation [15, 16]. This information may contribute to species protection through
the implementation of fishing closures or designs of protected areas [17, 18].

Marine Protected Areas (MPAs) have been implemented worldwide and play important
roles in management of fisheries resources, conserving marine biodiversity, protection of sensi-
tive habitats and enhancing eco-tourism [19–21]. Numerous studies have shown MPA’s to be
successful in promoting habitat recovery, particularly coral reefs [22, 23], ensuring genetic con-
nectivity [24] and providing economic benefits to local communities through increased tour-
ism and improved fisheries [25–27]. The benefits of MPAs for fish species are well
documented [26, 28], with studies indicating numerous fish species to be more abundant and
larger in size within no-take protected areas than outside [29–32]. MPAs have been successful
in conserving stocks of exploited species and provide benefits to fisheries through the ‘spill-
over effect’ [27, 33] and larval replacement across protected area boundaries [34–36]. However,
in order for MPAs to be effective in protecting specific fish species, the movement patterns and
home range of these species of interest, must be first determined in order to establish the
appropriate size of an MPA and its location [37, 38]. As some species of fish show ontogenetic
differences in habitat use and movements [5, 39], an understanding of their behaviours across
all life stages is essential.

Many recent studies have used acoustic telemetry to understand the movement dynamics of
fish within MPAs. For example, luderick (Girella tricuspidata: Family Girellidae) were found to
display strong site fidelity on shallow sub-tidal reefs within an MPA in New South Wales, Aus-
tralia [40]. Similarly, dusky grouper (Epinephelus marginatus: Family Serranidae) were shown
to display strong site fidelity and were regularly detected residing in a MPA for up to five years
in the Azores [41, 42]. Small scale MPAs were found appropriate to protect the habitats and
small home range of the comber (Serranus cabrilla: Family Serranidae) [43], and also the white
sea-bream (Diplodus sargus: Family Sparidae) was observed to increase in abundance and bio-
mass following the recent establishment of a small-sized MPA [44]. Eastern blue groper
(Achoerodus viridis: Family Labridae) were shown to have smaller home ranges in no-take
MPAs than in fished areas [45], whilst western blue groper (Achoerodus gouldii: Family Labri-
dae) also displayed strong site fidelity and small home ranges within an MPA [46]. If protected
areas are to be implemented to assist in the management of a particular species, then ideally
the size of the protected area should be of sufficient size to cover core and home ranges, and
that the species is known to display site fidelity to the proposed protected area.

The focus of this study is snapper (Chrysophrys auratus: (Family: Sparidae), a species of
high value to commercial and recreational fisheries in Australia [47]. Its distribution in south-
ern Australia encompasses the region from central Queensland to central Western Australia,
including Tasmania [48], and it is also found in New Zealand [49]. It is considered a generalist
predator [50] feeding on crustaceans, invertebrates and small fishes [51]. Adult fish can be
found across a variety of habitats, particularly rocky reefs [49], whilst juveniles are known to
inhabit estuaries and embayments [52–54]. Chrysophrys auratus in no-take MPAs have been
found to occur in increased abundances [55–58] and display strong site fidelity [6]. Acoustic
tagging studies in New Zealand have found that C. auratus displays high site fidelity with small
overlapping home ranges [59], have extreme residency within a no-take marine reserve when
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compared to fished areas [60], and exhibit flexible behaviour, whereby their habitat utilisation
can vary seasonally and between individuals [61]. Conversely, whilst the above mentioned
studies indicate that C. auratus displays strong site fidelity and small home ranges, other stud-
ies have found that snapper can travel large distances. For example, adult C. auratus were
recorded up to 370 km from initial capture location on the west coast of Australia [62] and
adults have similarly been recorded travelling hundreds of kilometres in New Zealand [63].

Within New South Wales (NSW), Australia, there are six multiple-use MPAs that have
been established “to conserve and protect marine biodiversity” [64] that include 115 separate
no-take marine sanctuaries [65]. One of the species regularly highlighted when assessing the
effectiveness of fishing exclusion from NSWMPAs is C. auratus [56, 58, 66] and they are con-
sidered to be one of three ‘indicator’ fish species for assessing MPA effectiveness in NSW [67].
However, there has been no published research in NSW on the movements or home range of
this species. In particular, the movements of C. auratus within MPAs in NSW have not been
described and it’s unknown whether they display site fidelity within no-take areas or if they
move outside these zones into areas open to fishing. It is therefore necessary to determine of
the degree of C. auratus site fidelity within protected areas or whether they are a transient spe-
cies to MPA’s, as their use as an indicator species in monitoring programs for NSWmarine
parks will be enhanced if they can be demonstrated to display some form of site fidelity within
the MPA. The aims of this study were therefore to: 1) determine the home and core ranges of
juvenile and adult C. auratus within a small-sized MPA; 2) assess their site fidelity and move-
ments through time, and; 3) determine their diel activity patterns. Information from this study
will assist managers in future planning of MPAs to help manage fishery resources, as the size of
MPAs needs to take into consideration the home range and site fidelity of the species of
interest.

Methods

Study site
This study was conducted in the multiple-use Port Stephens-Great Lakes Marine Park
(PSGLMP), approximately 980 km2 in size, located on the mid-north coast of NSW, Australia
(Fig 1). The marine park was declared in December 2005 under the NSWMarine Parks Act 1998
with implementation of the marine zoning plan commencing in April 2007. Within the marine
park, there are various zones that provide different levels of protection. Sanctuary zones provide
the highest level of protection with no extractive activities (i.e. fishing) permitted in these areas
and represent 17.5% (171.6 km2) of the parks waters. The location for this study was Cabbage
Tree Island (32°41'14.95"S 152°13'46.85"E) which is situated 1.5 km off the coast and is in close
proximity to the mouth of the Port Stephens estuary (Fig 1). The waters surrounding Cabbage
Tree Island are predominantly sanctuary zone (3.69 km2), whilst the western side of the island is
classified a restricted habitat protection purpose zone (HPZ: 1.31 km2). Within the HPZ, fishing
is permitted for only three bait fish species (yellowtail scad Trachurus novaezelandiae: Family
Carangidae, slimy mackerel Scomber australasicus: Family Scombridae and eastern sea garfish
Hyporhamphus australis: Family Hemiramphidae) (Fig 1). The reef surrounding Cabbage Tree
Island is dominated by urchin-grazed barrens habitat which extends down to depths of 20 m,
with the reef edge finishing in close proximity to the island (< 50 m) and the shallower sections
(< 10 m) dominated by kelp (Ecklonia radiata: Family: Lessoniaceae) habitat.

Receiver array and tagging procedures
An array of 18 acoustic receivers (VR2W, Vemco http://www.vemco.com) was established for
this study. Ten receivers were deployed around Cabbage Tree Island with the other receivers
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covering nearby reefs and islands, whilst the entrance to the Port Stephens estuary was also
‘gated’ to detect if any C. auratus that migrated into the estuarine environment. Additionally,
eight receivers were deployed along Bennetts Beach (Hawks Nest) as part of a juvenile white
shark (Carcharodon carcharias) monitoring program [68, 69] (Fig 1) and these were also
checked for any C. auratus detections. The AATAMS database that maintains acoustic receiver
data for the Australian region, and lists the location of the AATAMS receiver network (http://
imos.org.au/aatams.html), was also searched for C. auratus detections from the date tagged
until September 2014. Deployments within the sanctuary zone were positioned to ensure that
any tagged C. auratus within the Cabbage Tree Island sanctuary zone would be detected when
present. Range testing was undertaken to assess the detection range of the receivers [70] using
continuous ping acoustic tags on a mooring buoy and then listening at 100 m intervals out to
500 m. It was found that the minimum detection range for the receivers in the poorest sea con-
ditions (run out low-tide with poor visibility and large swell) was approximately 400 m. Acous-
tic receivers were swapped over approximately every 6 months with the data downloaded using
VEMCO software and viewed in Microsoft excel.

Fig 1. Location of Cabbage Tree Island in Port Stephens Great Lakes Marine Park and acoustic station array.

doi:10.1371/journal.pone.0142454.g001
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Thirty C. auratus were captured during three days (2–4 November 2010) with rod and line
using either J-style hooks baited with frozen Australian sardines (Sardinops sagax: Family Clu-
peidae) or southern calamari (Sepioteuthis australis: Family Loliginidae), or soft plastic lures
(Berkley Gulp, Berkley USA). Fish ranged in size from 24.5–57.5 cm fork length (FL) and were
captured from water depths of 5–20 m. Fight duration ranged from< 1 min up to ~4 min.
Once landed, using a soft mesh landing net, the fish were held in an aerated 100 L holding tank
with a constant flow-through seawater supply provided by a battery-operated bilge pump.
Prior to surgery, the fish were transferred into an anaesthetic bath (50 mg.L−1 AQUI-S,
AQUIS-S NZ, Wellington, New Zealand) until the opercular rate decreased, the fish failed to
respond to stimuli and a loss of equilibrium occurred (~10 min).

Fish were placed in an operating cradle for surgery. Anaesthesia was maintained using a
recirculating pump system from a sump tank (containing anaesthetic further diluted to 25 mg.
L−1 concentration) located below the operating cradle which pumped water over the gills via a
soft plastic tube inserted into the fishes mouth. The water exited via the opercula and drained
back into the sump. Surgical skin preparation was achieved with a light iodine scrub (Betadine,
Mundipharma B.V., Hoevelaken, Netherlands). A few scales were removed allowing a small
horizontal incision (~20 mm long) to be made with a sterile scalpel blade. The incision was
made just to one side of, and perpendicular to, the ventral midline roughly half way between
the cloaca and the base of the ventral fins. An iodine-soaked Vemco V13 or V16 acoustic trans-
mitter (pulse interval 120-180s) was then inserted directly into the coelomic cavity. The type of
transmitter used was dependent on the size of the fish with V13 transmitters used in 17 fish
(ranging in size from 24.5 to 38.2 cm FL) and V16 transmitters used in 13 larger fish (37.5–
57.5 cm FL). The antibiotic oxytetracycline hydrochloride (Sigma-Aldrich, Ballerup, Denmark)
was also intracoelomically administered prior to incision closure at a dose of 75 mg.kg-1 body
weight (length-weight relationship for C. auratus taken from (47). Skin and body wall closure
was undertaken using 3/0 Monosyn1 glyconate absorbable monofilament suture material (B.
Braun Australia P/L, Bella Vista, NSW, Australia) using two single interrupted sutures. Fish
were also marked with a single external dart tag (Hallprint, Hallprint Pty Ltd, Hindmarsh Val-
ley, South Australia; 85 mm long, 2 mm dia.) inserted into the dorsal musculature and secured
between the dorsal pterygiophores. The external tags were used to identify fish carrying a trans-
mitter if re-captured. Fish were then returned to the holding tank for recovery. During recov-
ery, the fish were monitored for a return of reflexes and movement of the opercula, fins and
body in a coordinated fashion (~10–40 min). Once the fish were swimming in an upright posi-
tion with the same tail strength as when they were first caught, they were released at the surface
at their respective capture locations.

Data analysis
The data were filtered to remove any potential ‘false detections’, that occur due to signal colli-
sions or background noise [71], by removing any single detections from a fish that occurred on
a specific receiver within a 24 h period [18]. Additionally, data from the first 36 h post-tagging
was excluded due to potentially atypical behaviors as a result of the tagging [45, 53, 60].

Site fidelity. Site fidelity was quantified using a Residency Index (RI) [45, 72]. This was
calculated as the number of days when a fish was detected on any of the receivers within the
array (the 18 receivers established for this study) divided by the total number of days the full
array was deployed (i.e. until 31 October 2011). A value of 0 indicates no residency and a value
of 1 indicates permanent residency [45, 46]. Receiver CT02 was missing from 15 April to 13
May 2010. To determine if this affected the RI, the RI for each fish was calculated with this
period included and excluded and compared using a paired Wilcoxon test. Since the RI was
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non-normally distributed, a Spearman’s correlation was used to test for an association between
the length of the fish and the RI from the full array deployment. A Mann-Whitney was used to
determine if the tag type (V13 vs V16) had an effect on the RI.

Fine-scale site fidelity (i.e. the level of movement around the receiver array), was quantified
as: (i) the number of receivers a fish was detected on each day, and; (ii) using the Minimum
Linear Dispersal (MLD) method [40, 73]. The MLD was defined as the distance between where
the fish were released post-tagging and the furthest receiver that fish was detected on [40]. The
distance between the tagging locations and each receiver were calculated in ArcGIS 9.3 (ESRI,
California). For any points where land obstructed the direct route between them, tracks were
generated to simulate the shortest route a fish could swim. A Spearman’s correlation was used
to test if the MLD was associated with body size (fork length).

Diel activity. To determine the diurnal behaviour of C. auratus the proportion of detec-
tions recorded during the day and at night was calculated for each fish and compared using a
paired Wilcoxon test. Day and night phases were determined using sunrise and sunset times
from Australian Government Geoscience Australia (http://www.ga.gov.au/geodesy/astro/
sunrise.jsp; accessed 3 March 2014). Diel activity patterns were quantified as the mean detec-
tion frequency for each hour for each fish. Multiple linear regression was used to test if there
was a relationship between the mean detection frequency and the time of the day, body size or
tag type.

Core and home range estimates. Estimated positions of the fish were determined during
short-term centres of activity (COAs) following methods described in Simpfendorfer et al.
[74]. An appropriate time interval (Δt), that allows a sufficient number of detections to be
recorded on the more distant receivers but does not allow the fish to move too much, must be
chosen to produce accurate results [74]. The ‘best’ Δt was selected by testing six different time
intervals (10, 20, 30, 40, 50 and 60 mins) using methods described in Villegas-Rios et al. [72].
For this study, the ‘best’ Δt was 30 mins (number of receivers fish detected on per time interval:
2.1 ± 0.04; total number of detections per fish from all receivers per time interval: 11.0 ± 0.93).

The fish were categorized as ‘resident’ or ‘non-resident’ following [60], whereby resident
fish that were detected> 65% of available half hour time bins. Only the resident fish provided
sufficient information to perform a meaningful core and home-range analysis [60]. Kernel uti-
lization distributions (KUDs) are commonly used to estimate the core and home range of an
animal using the 50% and 95% contours, respectively [40, 60]. The half hourly COAs were
used to calculate the core and home ranges of each C. auratus using the adehabitatHR package
[75] in R [76]. Missing receivers would likely bias core/home ranges; therefore, only data when
the full array was deployed were used in the estimations (4 November 2010 to 15 April 2011
and 13 May to 31 October 2011). Two core and home ranges were estimated: (i) for the entire
study period (as specified above), and (ii) for the spawning and non-spawning seasons. Chry-
sophrys auratus are serial spawners [77], spawning batches of eggs daily [78] from August to
October in New South Wales [79]. Therefore, August to October was defined as the spawning
season and January to May as the non-spawning season (excluding November, December,
June and July), to ensure no overlap of seasons.

Linear mixed effects models were used to determine if there was a significant difference in
core/home ranges between: (i) maturity stage (juvenile/adult fish); (ii) the spawning and non-
spawning seasons, and; (iii) spawning/non-spawning season according to maturity stage (i.e.
an interaction between the terms). Tag type could not be included in the model as it was
directly correlated with the maturity stage of the fish (Pearson’s correlation: r = 1.0). The
unique fish identity code was used as a random effect. Fish under 35 cm (fork length) were clas-
sified as juveniles, which was the length at maturity for 95% of snapper caught off the NSW
coast [79]. Data exploration was done following the protocol of Zuur et al. [80]. The linear
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mixed models were run using the R ‘lme4’ package [81]. The most parsimonious model struc-
ture was selected using the step-down protocol outlined in Zuur et al. [82]. Temporal correla-
tion and variance structures [83] were used during the model selection process and their
inclusion or exclusion in the model was based on Akaike’s Information Criterion for small
sample sizes (AICc). Support for each model was measured using the differences in AICc
(ΔAICc) where the ‘best’model ΔAICc equals zero and ΔAICc of< 4 indicate models with
considerable support [84]. If ΔAICc indicated support for more than one model, model averag-
ing across normalized Akaike weights was conducted using the ‘MuMIn’ package in R [85].
Model validity was checked by visual examination of residual plots, plots of the standardized
residuals versus theoretical quartiles (Q-Q plots) and checking the variance of the residuals for
each level of the predicator variables [82]. The significance of each fixed effect predictor vari-
able was estimated using a likelihood ratio test, whereby the model including a particular term
was compared with a model excluding that term and its interactions, using the R ‘anova()’
function. Tukey’s pairwise comparisons were used if a multi-level covariate was included in the
‘best’model (i.e. spawning/non-spawning season and maturity stage interaction term) and
were done using the ‘multcomp’ package in R [86].

Daily day/night space use estimates. Linear mixed effects models were used to determine
if there was a relationship between C. auratus daily day/night space use and various environ-
mental (time of day (day/night), water temperature, moon illumination, and spawning/non-
spawning season) and biological (maturity stage) variables. Again, tag type could not be
included as it was directly correlated with maturity stage. Space use (95% KUDs) was calculated
for day/night-time of each day within the spawning and non-spawning seasons for each of the
fish considered resident. The day or night phases were determined using methods previously
described (see Methods: Diel activity). Moon illumination data was obtained from the United
States Naval Observatory Astronomical Applications Department (http://aa.usno.navy.mil/
data/docs/MoonPhase). A Vemco minilog was deployed within the study area from March
2011 to record water temperature (SEACAMS data). A log-10 transformation was applied to
the daily day/night space use estimates to improve assumptions of normality and homogeneity.
Model selection and the importance of each term were carried out using the same methods as
described above (Methods: Core and home range estimates).

Ethics statement
This research was undertaken in accordance with the ethical standards of the NSW DPI Ani-
mal Care and Ethics Committee (Permit No. 09/07).

Results
Fourteen of the 30 tagged fish were considered adults (> 35 cm, fork length) and sixteen were
considered juveniles (Table 1). Two fish were never detected after being tagged (fish #4 and
#16) and two others were only detected for 7 and 8 days (fish #5 and #9), respectively, post
release. It is unknown whether these fish left the area, were predated on or died as a result of
the tagging procedure or that the tags malfunctioned; however, they were not detected on any
other receivers away from Cabbage Tree Island. Given the uncertainty about the fate of these
fish, they were removed from subsequent analyses. The residency index (RI) for the remaining
fish varied between 0.1 and 1.0 with a mean RI of 0.83 (i.e. fish were detected 83% of days from
36 hour post tagging to the 31 October 2011; SE = 0.05) (Table 1).

Nine fish continued to be detected regularly after this time period when the majority of the
receivers were removed and six fish continued to be detected at the site in 2014 (Table 1). No
fish were detected remaining at the site in acoustic surveys undertaken in October 2014. The
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longest duration that a fish was continuously recorded at Cabbage Tree Island, and not
recorded at any other sites, was 1249 days (fish #28). There was a significant difference in the
RI calculated that included and excluded dates when a receiver was missing from the array
(paired Wilcoxon test: p-value = 0.04). Therefore, the RI, and the subsequent analyses, only
used data when the full array was available, i.e. until October 2011. Body size did not signifi-
cantly affect the RI (Spearman correlation: rho = 0.25; p = 0.20) nor did the tag type (Mann-
Whitney: W = 84.5, p = 0.38).

The number of receivers a C. auratus was detected on per day ranged between 0 and 10
(4.2 ± 0.42; mean ± SE). The maximum distance between the tagging location to the furthest
receiver a fish was detected on (MLD) ranged between 785–2311 m (1302 ± 82 m; mean ± SE).
One fish (#29) was only ever detected on the receiver closest to its release location (90 m).
Three fish were detected on receivers away from Cabbage Tree Island. One fish (#6) was
detected on the Little Island receiver (~ 1.7 km from Cabbage Tree Island; Fig 1) from June to
July 2011, and then again one day in November 2011 before it was not detected again. Another

Table 1. Summary of 30Chrysophrys auratus tagged within the Port Stephen’s-Great Lakesmarine park.

Fish ID FL (cm) Date tagged Last detected Area tagged Tagged in SZ or HPZ RI Resident

1 32.9 3/11/10 17/11/11 North SZ 0.99 Y

2 34.8 2/11/10 22/04/11 East SZ 0.41 N

3 33.6 2/11/10 17/11/11 East SZ 1.00 Y

4 25.5 2/11/10 East SZ 0.00 N

5 25.9 3/11/10 10/11/10 South SZ 0.02 N

6 26.7 3/11/10 09/11/11 South SZ 0.62 N

7 25.6 3/11/10 13/11/11 South SZ 0.98 Y

8 24.5 3/11/10 17/11/11 South SZ 0.99 Y

9 25.4 2/11/10 10/11/10 East SZ 0.01 N

10 26.3 3/11/10 16/06/11 South SZ 0.58 N

11 29.6 3/11/10 18/11/11 South SZ 0.99 Y

12 25.9 3/11/10 18/11/11 South SZ 0.99 Y

13 27.4 2/11/10 28/06/11 East SZ 0.62 N

14 27.7 3/11/10 16/11/11 South SZ 0.99 Y

15 34.1 3/11/10 18/11/11 South SZ 0.99 Y

16 26.4 3/11/10 South SZ 0.00 N

17 38.2 4/11/10 18/11/11 West HPZ 0.92 N

18 37.8 3/11/10 01/01/12 North HPZ 0.89 N

19 53.0 2/11/10 27/02/14 East SZ 1.00 Y

20 57.5 3/11/10 02/12/13 North HPZ 0.99 Y

21 42.1 3/11/10 10/02/11 West HPZ 0.29 N

22 40.7 4/11/10 16/01/14 East SZ 0.99 Y

23 38.6 4/11/10 03/03/12 South SZ 0.99 Y

24 39.5 3/11/10 03/01/14 North HPZ 0.99 Y

25 37.5 4/11/10 04/03/14 East SZ 0.99 Y

26 49.6 3/11/10 08/12/10 West HPZ 0.10 N

27 55.3 4/11/10 05/04/14 West HPZ 0.99 Y

28 48.3 4/11/10 06/04/14 West HPZ 0.99 N

29 48.6 4/11/10 11/02/12 West HPZ 0.83 N

30 46.0 4/11/10 01/06/11 West HPZ 0.54 N

FL = fork length. SZ = sanctuary zone. HPZ = habitat protection zone. Resident fish were those detected > 65% of available half hour time bins.

doi:10.1371/journal.pone.0142454.t001
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fish (#20) was detected at Little Island on a single day in July 2011 but this fish was also
detected on the receivers around Cabbage Tree Island before and after being detected at Little
Island. Data from the AATAMS network indicated that a single larger adult (#30: 46 cm when
tagged) travelled a very large distance. It was last detected at Cabbage Tree Island on 01/06/
2011, then recorded at Seal Rocks (32°27'49.93"S 152°33'9.77"E) on 21–23 June 2011 and last
recorded at Coffs Harbour (30°17'17.27"S 153°11'15.04"E) on 16–17 July 2011. Over a period of
46 days, this fish moved a total distance of ~ 290 kms. There was no association between MLD
and fish size (Spearman’s correlation: rho = 0.16, p = 0.39).

Chrysophrys auratus displayed strong diurnal behaviour and were detected significantly
more during the day than at night (paired Wilcoxon test: p-value< 0.001), with an average of
67% of the detections occurring during the daylight hours (range: day = 53–85%; night: 14–
47%) (Fig 2a and 2b). There was no significant difference in the detection frequency between
the different hours of the day or tag type (multiple linear regression: p-values => 0.05); how-
ever, there was a significant difference depending on the size of the fish (multiple linear regres-
sion: p-value < 0.001) with the mean detection frequency decreasing for larger fish (Multiple
linear regression: estimate = -0.18). Although, this model only accounted for a very small
amount of deviance observed (R2 = 0.05).

Four snapper, in addition to the four fish suspected to have died, were excluded from COAs
estimations as they were only detected on a single receiver within each half hourly period
(including fish #28 and #29). A mean of 11832 ± 779 COAs were estimated for the remaining
22 fish (n = 6 juveniles); however, only 15 fish were categorised as ‘residents’ (Table 1; Fig 3).
Overall core and home ranges of these fish varied between 0.01–0.12 km2 and 0.05–0.70 km2,
respectively (median core range: 0.04; median home range: 0.33) (Fig 4).

Model selection on core ranges produced four model candidates with a ΔAICc< 4
(Table 2). The maturity stage was the best model predictor and had a relative importance of
0.41. The juvenile fish had smaller core-ranges than the adults (Fig 5); however, this difference
was not significant (intercept estimate: 10.4, juvenile estimate: -0.68, likelihood ratio: p-
value = 0.15). There was also no significant difference between maturity stages spawning/non-
spawning season (likelihood ratio: p-value = 0.41; relative importance: 0.26). The interaction
between maturity stage and spawning/non-spawning season was not included in any of the
‘best’models (Table 2), therefore, there was no difference between the seasons according to
maturity stage.

There were also four model candidates with a ΔAICc< 4 produced from model selection
on home range estimates (Table 2). Like the core ranges, the maturity stage was the best model
predictor (relative importance: 0.63), and although the juveniles had smaller home-ranges (Fig
5), this difference was not significant (likelihood ratio: p-value = 0.5). Spawning/non-spawning
season was also not significant (likelihood ratio: p-value = 0.51; relative importance: 0.23).
Again, the interaction between maturity stage and spawning/non-spawning season was not
included in any of the ‘best’models (Table 2).

Model selection on daily day/night space use estimates produced two candidate models: the
full model (i.e. all the variables; model weight = 0.72) and the full model without water temper-
ature (model weight = 0.28). The best model predictors were:maturity stage according to
spawning/non-spawning season (i.e. the interaction betweenmaturity stage and spawning/
non-spawning season), day/night-time, day length and moon illumination and all had a rela-
tive importance of 1.0. Juveniles had significantly smaller daily day/night space use than the
adults in the non-spawning season (p-value = 0.04) but not in the spawning season (p-
value = 0.41). Adult fish had significantly smaller daily day/night space use in the spawning
season (p-value< 0.001) while the juveniles’ space use was significantly smaller in the non-
spawning season (p-value< 0.001). The daily day/night space use was also significantly smaller

Movements of Snapper within a Small-Sized MPA

PLOSONE | DOI:10.1371/journal.pone.0142454 November 6, 2015 9 / 20



Fig 2. Diel activity patterns of taggedChrysophrys auratus. a-b indicate the maturity stage of the tagged fish: a = juvenile; b = adult. Hour of the day is
represented by a 24 hour clock.

doi:10.1371/journal.pone.0142454.g002
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at night and increased with increasing moon illumination (both p-values< 0.001). There was
no significant difference for water temperature (p-value = 0.79; relative importance: 0.28).

Discussion
This acoustic tagging study represents the first detailed assessment of movement patterns of C.
auratus within a MPA on the east coast of Australia. It demonstrated that a high proportion of

Fig 3. Bubble plots showing the percentage of detections at each receiver for those fish considered to be resident fish around Cabbage Tree
Island (fish that were detected > 65% of available half hour time bins). * indicates adult fish.

doi:10.1371/journal.pone.0142454.g003

Movements of Snapper within a Small-Sized MPA

PLOSONE | DOI:10.1371/journal.pone.0142454 November 6, 2015 11 / 20



C. auratus displayed strong site fidelity within a no-take sanctuary zone around an offshore
island, and that one fish undertook a large migration northwards along the NSW coast. Whilst
this MPA was not specifically designed to protect C. auratus, it is clear that even at a small size,
that the MPA can provide benefits to both juvenile and adult fish which display strong site con-
nection, through the removal of incidental and targeted fishing pressures.

Fig 4. Core and home range estimates for residentChrysophrys auratus. * indicates adult fish. Fish 28 and 29 are not included as they were only
detected on one receiver.

doi:10.1371/journal.pone.0142454.g004
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Home and core range
This study found that most C. auratusmaintained small home ranges within the study area
and that there was no significant difference in core or home ranges between juveniles and
adults. Whilst there was no significant difference in core or home ranges between adults and
juveniles, the adults were found to have much larger core and home ranges but it was much
more variable (Fig 5). It was also shown that individual C. auratus display bimodal space use,
similar to the findings of [59]; however, the reasons for these bimodal patterns are unknown.
The habitats around Cabbage Tree Island have not been mapped so it’s not possible to make
assumptions in relation to habitat availability and reef topography (depth and gradient). These
bimodal differences may be influenced by other factors such as higher concentrations of prey
or increased shelter, or are related to foraging or social interaction. These findings of fish hav-
ing small home ranges within a no-fishing area are similar to the results of a study in New Zea-
land that found that C. auratus tagged in an area open to fishing had home ranges with more
than one main area of use and spanned a greater area overall, when compared with fish tagged
in a non-fishing area, which only had one main area of use and hence a much smaller home
range [60]. However, it is not known if the small home ranges within the no fishing reserve are
a direct result of the protection status, or could possibly be driven by other factors such as reef
topography or habitat characteristics, such as the presence of kelp as alluded to in Parsons et al.
[60].

It has been previously suggested that protected areas (no-fishing) can lead to extreme resi-
dency in fish through modification of individual behaviours or through the removal of selective
exploitation [60]. Modification of fish behaviour within sanctuary zones has also been
hypothesised to occur in response to the increased presence of scuba divers and associated
feeding [45]; however, the sanctuary zone around Cabbage Tree Island is not considered a pop-
ular scuba diving location and is infrequently visited by local dive operators (Harasti per obs).

Site fidelity / Movements
It was found that C. auratus displayed very strong site fidelity to the rocky reefs surrounding
Cabbage Tree Island. Twenty-six of the thirty tagged fish (87%) remained continuously at the
site for the first 6 months of the study and were not detected on any adjacent reefs, islands or
on the AATMAS acoustic receiver network along the NSW coast. This includes the four fish

Table 2. The ‘best’models (ΔAICc < 4) for linear mixed effects models on core and home ranges.

Model df AICc ΔAICc Model weight

Core ranges (50% KUD)

~ NULL 3 96.47 0.00 0.43

~ maturity stage 4 97.10 0.63 0.31

~ spawn 4 98.45 1.99 0.16

~ maturity stage + spawn 5 99.31 2.84 0.10

Home range (95% KUD)

~ maturity stage 4 75.37 0.00 0.49

~ NULL 3 76.52 1.15 0.28

~ maturity stage + spawn 5 77.84 2.47 0.14

~ spawn 4 78.76 3.39 0.09

Fixed effects: spawn = spawning/non-spawning season; maturity stage = adult/juvenile. The unique fish

identity code was used as the random effect.

doi:10.1371/journal.pone.0142454.t002
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that were considered to have either died following tagging or the tags malfunctioned, but it is
feasible that these fish may have migrated to areas where no acoustic receivers were present.
No fish were detected moving into the adjacent Port Stephens estuary or along the nearby
beaches. The size of the fish and the original capture location did not influence the residency
index (RI) and only three fish were detected on stations outside the Cabbage Tree Island array.
The RI for C. auratus at the site was considered high (0.83) when compared to other fish spe-
cies [87, 88], and C. auratus have been shown to display strong site fidelity to a range of habi-
tats including rocky reefs [6, 59, 60], embayments [89, 90] and estuarine systems [53]. In

Fig 5. Core and home range estimates of residentChrysophrys auratus for the spawning and non-spawning season, grouped by maturity stage.
The dot inside the box indicates the median; the box indicates the first and third quartile and the whiskers indicate the minimum and maximum values.

doi:10.1371/journal.pone.0142454.g005
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contrast to these findings, C. auratus have also been found to display significant movements
from their tagging site [62, 89] and site fidelity is considered to vary between individuals and
seasons [61]. Similar to the findings of Egli & Babcock [61], some C. auratus were detected
moving outside the Cabbage Tree Island sanctuary zone to adjacent reefs and islands. Such
movements demonstrate some limited potential for C. auratus to spill over into fishable areas,
yet with the majority of fish remaining protected from harvesting within the MPA. Addition-
ally, site fidelity of C. auratusmay be affected by the size of the actual protected area, but could
also be influenced by other factors within the protected area such as reef topography and avail-
able habitat types [60, 91]. Chrysophys auratus are known to occur in a range of marine habi-
tats, ranging from rocky reefs [63], soft corals [52] to macro algal habitats, such as kelp [60,
91]. The types of habitats, and their associated abundance, available in a protected area need to
be taken into consideration for any planning of protected areas for the purposes of conserving
C. auratus. Whilst this study provides an indication of the home range sizes of C. auratus, it
would be inadequate to declare a protected area for C. auratus unless there was sufficient suit-
able habitat available for the species.

A single tagged adult C. auratus in the present study was shown to have travelled a large dis-
tance within a short time frame (~290 kms over 46 days), an average rate of ~ 6.3 km per day.
Chrysophrys auratus have been previously shown to be capable of travelling large distances
along the east coast of Australia. A NSW Fisheries tagging program in the 1980’s recorded an
individual C. auratus travelling up to 420 km over a period of 173 days (from Sydney to Arra-
warra), whilst another fish moved a considerable distance from Coffs Harbour to Mooloolaba
in Queensland (430 km) in 597 days (NSW DPI unpublished data). In Queensland, a single C.
auratus was observed moving 290 km over a period of 6 months [89]; however, this fish was
not acoustically tagged so it’s unknown if it arrived at its recapture location earlier than 6
months. It is possible that the individual from the present study that travelled ~ 290 km in only
46 days did so as part of a pre-spawning migration; however, the role pre-spawning migrations
may have in the dynamics of C. auratus spawning along eastern Australia requires considerable
further work. It is also feasible that the fish that undertook this northern migration was a tran-
sient fish to the island, rather than a resident fish, as it has been shown that different stocks of
C. auratus can display either transient or resident behaviour [62].

Diurnal activity and day/night space use
It was clear from diel activity patterns that C. auratus were more active during the day than at
night; however, there was no particular hour of day when they were most active. Similarly, it
has been shown in an estuarine study on C. auratus in New Zealand that their activity was pre-
dominantly diurnal [53]. One factor that could be confounding the strong diurnal activity is
increased ambient noise at night, which may have a negative effect on detection ability [92].
However, the potential increase of marine noise at night interfering with acoustic detections
was not assessed in this study. The reef surrounding Cabbage Tree Island is dominated by large
complex rocky boulder habitat which contains many potential refugia in which a fish could
hide. It is therefore likely that during the night, C. auratus take shelter within the reef which in
turn reduces detections through the acoustic array. Indeed, observations made scuba diving at
night at this site has revealed C. auratus hiding in amongst the complex rocky boulder habitat
(Harasti per obs).

MPA implications
Whilst MPAs in NSW are not fishery management tools and have not been specifically
designed to protect C. auratus from fishing, it is clear that individuals of this species would
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benefit from no take sanctuary zones as a result of their small home range and strong site fidel-
ity. It has been shown for another sparidae species with known small home ranges and high
site fidelity (the white sea-bream Diplodus sargus), that both abundance and biomass increased
following the establishment of a small MPA [44]. The cause of these increased residency pat-
terns with MPAs could be driven by increased prey abundance following the removal of fish-
ing, habitat characteristics, local population densities, and con-specific densities, or the
structure of mating systems [60, 61, 93, 94]. Given that the abundance of C. auratus has been
to shown to increase in protected areas within the PSGLMP over a short period of time [67],
this increase in con-specific density could potentially be the main driver in their decreased
home ranges within the protected area; however, additional acoustic telemetry research at
other protected and non-protected sites is warranted to investigate this further.

When the strong site fidelity of C. auratus is combined with observations that the abun-
dance of C. auratus is higher within no-take areas than outside [6, 57, 67], the use of C. auratus
as an ‘indicator’ species in long term monitoring programs for temperate marine parks is vali-
dated. This could be used to help assess the effectiveness of marine park zoning compliance in
NSW, as the overall size and relative abundance of C. auratus should increase over time in
areas protected from fishing.
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